

Laboratory for Electron Microscopy

Quantification of the thickness of TEM samples by low-energy scanning transmission electron microscopy

M. Hugenschmidt¹, E. Müller¹ and D. Gerthsen¹

¹Laboratory for Electron Microscopy (LEM), Karlsruhe Institute of Technology (KIT), Engesserstr. 7, 76131 Karlsruhe, Germany

Introduction

Knowledge of the local sample thickness is important for analytical electron microscopy

Normalization of measured intensities

Normalization of measured intensities I_s according to

- Established techniques: EELS, CBED, electron holography, thickness contours in TEM
- More recent and promising technique: high-angle annular dark-field (HAADF) scanning transmission electron microscopy (STEM) at low energies $(E_0 \le 30 \text{ keV})$ [1-2]
 - \rightarrow Strong material (Z-) contrast
 - \rightarrow Negligible knock-on damage
- \blacksquare Contrast depending on sample thickness and composition \rightarrow thickness determination if composition is known

Goals

- Precise thickness determination of samples within a large range of atomic numbers
- Comparison of measured intensities of HAADF-STEM images with Monte Carlo (MC) simulations
- Validation of the method by using samples with known thicknesses
- Determination of the most suitable scattering cross-section (CS) to be used in the simulation

 $I_{nor, HAADF} = -$

 $I_{nor, HAADF}$: normalized measured intensity, I_{black} : background intensity,

I_{white}: intensity without sample (direct imaging of the detector)

Simulation of HAADF STEM intensities

- Monte Carlo simulations by CASINO software [3]
- Screened Rutherford CS (SR-CS) and different Mott CSs (M-CS)
- Normalization of simulated intensities

$$I_{nor,sim} = \frac{N}{N_0} \frac{E_{trans} - E_{off}}{E_0 - E_{off}}$$

I_{nor, sim} : normalized simulated intensity, *N*: number of electrons on the detector, N_0 : number of simulated electrons, E_{trans} : average energy of transmitted electrons, $E_{off} = 3$ keV: offset energy of the detector

Results

- Measured and simulated intensity line profiles of the normalized HAADF
 - STEM intensity as a function of thickness t (Fig. 4)

Fig.4: Simulated (SR-CS and most suitable by Interpolation or by

www.kit.edu

for

Fig. 1: Annular semiconductor STEM-detector (a) topview and b) sideview of the experimental setup.

Fig. 2: FIB-prepared lamella with wedge-shaped samples (SE-image, 3 keV)

Experimental techniques and samples

- Wedge-shaped samples with defined thickness profile fabricated by focusedion-beam (FIB) milling (Fig. 2)
- FEI DualBeam Strata 400S, combined FIB and scanning electron microscope (SEM)
- Annular semiconductor STEM-detector with bright-field (BF), dark-field (DF) and HAADF-segments below the sample (Fig. 1)
- Sample materials: MgO (Z = 10), Ge (Z = 32), Pd (Z = 46)

Imaging Conditions

- Measurement of normalized image intensities
- Reference intensites from direct imaging of the detector: Inner part of HAADFsegment visible at lowest magnification (Fig. 3a)

• Maximum of I_{nor} shifts to lower t for lower E_0 and higher Z

- Lower values of measured I_{nor} due to uncertainties concerning I_{white} and the response of the detector
- Best fit between experiment and simulations determined by comparing the maxima positions of I_{nor}
 - Low-density materials (MgO) and high primary electron energies (30 keV)
 - \rightarrow Mott CSs probably better choice
 - Screened Rutherford CS better choice for all other E_0 and Z (Pd and Ge)

Summary

Quantification of the local sample thickness by comparison of measured

Brightness and contrast kept constant for sample imaging

Primary electron energy: 10 - 30 keV

Minimum and maximum scattering angles: 0.187 – 0.683 rad

Fig. 3: a) HAADF STEM image of STEM-detector. Marked areas illustrate I_{white} and I_{black} used for normalization of the measured HAADF STEM intensities. b) Cross-section HAADF STEM image of the MgO sample at 20 keV with indicated position of the line scan. The thickness increases from left to right.

HAADF STEM intensity with Monte-Carlo simulations

Adequate choice of scattering cross-sections necessary

Light materials at high energies probably better described by Mott cross-sections, all other cases better described by screened Rutherford cross-section

 \blacksquare Uncertainties concerning I_{white} and response of the detector

References

[1] P.G. Merli et al., *Ultramicrosc.* 94 (2003), p. 89. [2] T. Volkenandt et al., *Microsc. Microanal.* 16 (2010), p. 604. [3] H. Demers et al., *Scanning* 33 (2011), p.135. [4] D. Drouin et al., *Scanning* 19 (1997), p. 20.

KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association

www.lem.kit.edu milena.hugenschmidt@student.kit.edu