

Quantitative Transmission Measurements in a Scanning Electron Microscope

T. Volkenandt¹, E. Müller¹, D.Z. Hu², D.M. Schaadt² and D. Gerthsen¹

Motivation

- Scanning transmission electron microscopy (STEM) in high-angle annular dark-field mode (HAADF) ⇒ strong material (Z-) contrast
- Energies ≤ 30 keV ⇒ reduced knock-on damage
- Thin samples ⇒ high lateral resolution of 1-2 nm
- Standard scanning electron microscope (SEM) ⇒ easy handling and quick variation of parameters (e.g. electron energy, detection angles, ...)

Instrumentation

- Combined focused ion beam (FIB)/SEM 🗢 FEI Strata 400S Annular semiconductor STEM-detector \Rightarrow bright-field (BF), dark-field (DF) and
- HAADF segments ■ HAADF scattering angle range ⇒ 0.2 - 0.7 rad
- electron energy 25 keV

Samples and preparation

- Heterostructure with four In, Ga, As quantum wells of 25 nm thickness separated by GaAs layers of 35 nm thickness
- In-concentrations x = 10, 20, 30 and 40 %
 grown on GaAs (001) substrate by molecular beam epitaxy (MBE)
- cross-section lamella preparation by FIB-technique
- wedge-shaped thickness profiles

Monte Carlo simulations

- Monte Carlo simulations with NISTMonte package
- Use of screened Rutherford cross-sections and continous slowing down approximation for energy loss
- Input ⇔ sample composition and geometry, electron energy
 Output ⇔ energy and scattering-angle distributions
- Consideration of detector influences
- Calculation of electron transmission in HAADF angular range is direct comparison with image intensity

Acknowledgement

This work was partly funded by the DFG Research Center for Functional Nanostructures (CFN) and by the DFG grant Ge 841/20. It has been further supported by a grant from the Ministry of Science, Research and the Arts of Baden-Württemberg (Az: 7713.14-300).

Transmission curves show chracteristic shape and maximum

Results - Sample thickness determination

- Intensity linescan (Fig.5, green arrow) along wedge (perpendicular to the edge) in region with known composition (GaAs)
- Transformation of linescan position d into sample thickness $\Rightarrow t(d) = t_0 + d \cdot tan \alpha$ Fit of linescan and transmission curve \Rightarrow precise values for thickness offset t_a and
- wedge angle α
- Calculation of local sample thickness possible for every pixel

Results - Composition quantification

- Intensity linescan (Fig.5, red arrow) at chosen sample thickness (80 nm) across quantum wells (parallel to the edge)
- Constant sample thickness assured by constant intensity in GaAs layers
- Differences of 4 9 gray levels sufficient for quantification
- Calculation of intensity ratios with respect to GaAs intensity ⇒ IInGaAs / IGAAs
- Comparison of measured intensity ratios with simulated intensity ratios ⇒ good agreement and reproduction of layer compositions

Summary and conclusions

- Sample preparation with wedge-shaped profile by FIB
- Reduction of knock-on damage due to electron energies < 30 keV
- Strong material contrast in HAADF STEM images
- Quantification by comparison with Monte Carlo simulations
- Determination of local sample thickness and composition with high lateral resolution
- More details ⇒ T.Volkenandt et. al, Microsc. Microanal., available on CJO 16. July 2010, doi: 10.1017/S1431927610000292

¹ Laboratorium für Elektronenmikroskopie (LEM) and Center for Functional Nanostructures (CFN), KÍT, Germany ² Institut für Angewandte Physik and CFN, KIT, Germany