

Universität Karlsruhe (TH) Research University • founded 1825

Towards Quantification of the In-Distribution in InGaAs Quantum Dots

H. Blank¹, D. Litvinov^{1,2}, R. Schneider¹, D. Gerthsen^{1,2}, T. Passow^{2,3,4}, K. Scheerschmidt⁵ ¹ Laboratory for Electron Microscopy (LEM), University Karlsruhe (TH), D-76128 Karlsruhe ² Center for Functional Nanostructures (CFN), University Karlsruhe (TH), D-76128 Karlsruhe ³ Institute for Applied Physics, University Karlsruhe (TH), D-76128 Karlsruhe ⁴ present address: Fraunhofer Institute for Applied Solid State Physics, D-79108 Freiburg ⁵ Max Planck Institute for Microstructure Physics, D-06120 Halle

Contact: blank@lem.uni-karlsruhe.de

Motivation

Composition evaluation by lattice fringe analysis (CELFA) [1] in transmission electron microscopy (TEM) is a well suited technique to quantify the Inconcentration, e.g. in $In_xGa_{1-x}As$ quantum-well structures.

Problem: Applied to quantum dots (QDs) this method cannot account for the threedimensional shape of QDs buried within a TEM sample. Since embedded QDs are surrounded by a GaAs cap layer and might become cut (see figure) during TEM sample preparation, the determined In-concentration will be underestimated.

Determination of the local extent and shape of QD: *Idea:* Identification of QD shape analyzing bright-field images

 \rightarrow local extent of QD in TEM sample calculable

1) Modeling of molecular-dynamically relaxed InAs-QDs with different shapes:

three-dimensional view of a pyramidal QD with truncated top and {101} facets; b) plan-view sight of that model

Task: Determination of the local extent of the QD with respect to the sample thickness along the incident beam direction to correct the CELFA result.

Specimen

Growth by molecular beam epitaxy on GaAs(001) substrates:

- Substrate temperature: 500 ℃
- -Buffer: 720 nm GaAs
- -Wetting layer: 2.4 monolayers (ML) InAs (nominal) at a deposition rate of $0.0057 \text{ ML/s} \rightarrow \text{formation of InGaAs QDs in the self-organized Stranski-Krastanov}$ growth mode
- Growth interruption between deposition of wetting layer and cap layer: 10 s - Cap layer: 28 nm GaAs

TEM cross-section and plan-view sample preparation using standard methods (grinding, polishing, Ar⁺-etching and wet-chemical etching, respectively).

Methods

Quantification of the In-concentration with CELFA

2) Simulation of plan-view bright-field (BF) images using the modeled structures

Fig. 4: simulated plan-view BF images of different QD shapes: a) sphere, b) pyramid {101}, c) pyramid {112}, d) pyramid {136} and e-g) experimental data

3) Comparison (Fig. 4) \rightarrow Best match for a **{101} facetted pyramid**

4) Verification of the {101} facets by cross-section high angle annular dark-field scanning transmission electron microscopy

Correction of the CELFA result

Fig. 5: Z-contrast shows angles around 45° between sides and base of the pyramids \rightarrow Agreement with {101} facetted pyramids

- Cross-section HRTEM images with lattice fringes perpendicular ((002) reflection) and parallel ((200) reflection) to the [001] growth direction (Fig. 1a,b)
- Artifacts in CELFA due to strong bending of the (002) planes
- -Strain contrast and thus artifacts minimal in the center of the QDs along the growth direction in micrographs using the (200) reflection (Fig. 1b) \rightarrow only area and imaging condition for reliable evaluation
- -Evaluation without consideration of the QD's three-dimensional shape and surrounding GaAs material yields a maximal In-concentration of x=0.46 (Fig. 1c)

Fig. 1: Lattice fringe images using a) (002) reflection, b) (200) reflection; c) CELFA result

Determination of sample thickness and relative position of the QD

- *Idea:* Tilt series of TEM dark-field images of the cross-section sample:
- Excitation of the chemically sensitive (200) reflection
- -Sample tilting around an axis parallel to the [100] direction in steps of 5° beginning close to the [010] zone axis
- \rightarrow Broadening of the projection of the wetting layer with increasing tilt (Fig. 2)

Fig. 2: Dark-field micrographs: extent of the projected wetting layer marked by arrows

- -Fitting of projection of {101} facetted pyramid on CELFA result (triangle in Fig. 6a) - Determination of relevant parameters: distance d_{S} between {101} facets at vertical position $z_{\rm S}$
- -Ratio V between the sample thickness and the local thickness of the QD as a function of the vertical coordinate z: $V(z) = d/(d_s + 2 \cdot (z_s - z))$
- Corrected In-concentration:

0 9.5 19 28.5 38 47.5 57 66.5 76 85.5 95 [%]

Fig. 6: a) Determination of the pyramid's parameters, b) shape corrected In-concentration

 \rightarrow Shape corrected CELFA result: Increasing In-concentration from bottom to top with a maximum of x=0.95 indium

Summary

- Sample thickness obtained via tilt series

- -Determination of QD shape (structural modeling, simulation of BF images, comparison) \rightarrow local QD extent
- Correction of the CELFA result by considering the ratio between sample thickness and local thickness of the QD
- -Corrected result in agreement with results obtained on similar samples with different experimental techniques [2,3]

- Criterion: Contrast of QD situated between boundaries of the projected wetting layer (Fig. 2b) \rightarrow QD completely embedded in TEM sample -Sample thickness d determined assuming parallel surfaces (Tilt angle α , width a of projected wetting layer untilted, width a' of the projected wetting layer at α)

 $d = [a'/\cos(\alpha) - a]/\tan(\alpha)$

Thin wetting layers $(a \rightarrow 0)$:

 $d = a'/\sin(\alpha)$

Outlook and remaining problems

- Better results for the sample thickness by application of electron holography - Errors due to deviations of the single QD's shape from the assumed ideal shape \rightarrow more accurate information on the three-dimensional shape is needed

References

- [1] A. Rosenauer and D. Gerthsen, Advances in Imaging and Electron Physics 107, 121 (1999), and A. Rosenauer, Transmission Electron Microscopy of Semiconductor Nanostructures – An Analysis of Composition and Strain (Heidelberg, Springer) Springer Tracts in Modern Physics (2003), 182p.
- [2] P. Wang, A. L. Bleloch, M. Falke and P. J. Goodhew, Direct measurement of composition of buried quantum dots using aberration-corrected scanning transmission electron microscopy, Appl. Phys. Lett. 89 (2006), 072111.
- [3] D. M. Bruls, J. W. M. Vugs, P. M. Koenraad, H. W. M. Salemink, J. H. Wolter, M. Hopkinson, M. S. Skolnick, Fei Long and S. P. A. Gill, Determination of the shape and indium distribution of low-growth-rate InAs quantum dots by cross-sectional scanning tunneling microscopy, Appl. Phys. Lett. 81 (2002), 1708.

Acknowledgements

This work has been performed within the project A.2 of the DFG Research Center for Functional Nanostructures (CFN). It has been further supported by a grant from the Ministry of Science, Research and the Arts of Baden-Württemberg (Az: 7713.14-300).