The SPANOCH method: A key to establish aberration correction in miniaturized (multi)column systems?

R. Janzen¹, S. Burkhardt¹, P. Fehlner¹, T. Späth¹, M. Haider¹,²

1: Laboratory for electron microscopy, KIT, Engesserstr. 7, 76131 Karlsruhe, Germany
2: CEOS GmbH, Engelerstr. 28, 69126 Heidelberg, Germany

Contact: info@dr-janzen.de

Motivation
- Scherzer theorem: rotationally symmetric fields suffer from spherical and chromatic aberrations.
- Within electron microscopes correctors are meanwhile state of the art.
- These correctors can not be randomly miniaturized
- not suitable for miniaturized single or multicolumn systems.
- We present a new concept:
 - provide multipole fields for correction purposes within a stack of thin sheets (plates),
 - as it could be produced by integrated fabrication methods.

Principle
- Holes within apertures are electron optical elements
- Superposition principle:
 - example: threefold symmetry

The SPANOCH concept
- We define ‘SPANOCH’ (sophisticated pile of apertures with non-circular holes) as a method of building a corrector out of a stack of apertures with specially shaped holes.

SPANOCH-type hexapole corrector
- Theoretical proof of principle: ray tracing study 2008
- Problem: Test-design not adjustable
- New design: decoupling of hexapole moments and round lenses by four adjustment voltages.
- Random access to hexapole strength
- Free of second order aberrations due to double symmetry:

Calculation methods
- SCOFF method used to approximate fundamental rays
- Fit of hexapole field strength \(\phi_3 \) determined by numerical analysis of plate triplet

\[
\phi_3(z) = \phi_{3A} \cdot \exp \left(-\frac{1}{2} \left(\frac{z \cdot \phi_{1C}}{\phi_{1W}} \right)^2 \right)
\]

- Adjusting wizard calculates adjustment voltage and correction power \(C_S \)
- Input/output diagram:

Kernel of adjusting wizard
- Use of transfer-matrix method to calculate fundamental rays in SCOFF approximation.
 - Sequence of simple lenses:
 \[
 M_{\text{lens}} = \begin{pmatrix} 1/1 & 0 \\ 0 & 1/f \end{pmatrix}, \quad M_{\text{space}} = \begin{pmatrix} 1 & s \\ 0 & 1 \end{pmatrix}
 \]
 - Davison-Calbick-formula: \(f = \frac{4V}{U_s - U_T} \frac{U_s - U_T}{U_s - U_T} \)
 - \(f = \Sigma_i M_i \vec{r}_0 \)

Analysis of results
- Change of parameters showed a tremendous optimization potential, e.g. distance \(a \):
 - \(a \rightarrow 0.3a \Rightarrow C_S \rightarrow 10^4 C_S \)
 - Continuous, approximately linear regulation of \(C_S \) via hexapole voltage
- Implementable global field strengths \(E < 4 \text{ kV/mm} \)

Outlook
- Further simulations without SCOFF approximation taking into account all contributions to \(C_S \) and to \(C_S \) will show the absolute potential of the hexapole corrector.
- These results will serve as initial adjustment for exact simulations.

Acknowledgement
We express our special thanks to CEOS GmbH, Heidelberg and ICT GmbH, Heinstetten for financial support.