Karlsruhe Institute of Technology

National Institute for Nanotechnology

www.lem.kit.edu simon.hettler@kit.edu

Danmarks Tekniske Universitet

Laboratory for Electron Microscopy

Contamination and charging of amorphous thin films in a transmission electron microscope

S. Hettler¹, M. Dries¹, P. Hermann¹, D. Gerthsen¹, E. Kano², M. Malac², L. Pfaffmann³, M. Bruns³, M. Beleggia⁴ ¹Laboratory for Electron Microscopy, Karlsruhe Institute for Technology (KIT), D-76131 Karlsruhe, Germany ³Institute for Applied Materials, KIT, D-76344 Eggenstein-Leopoldshafen, Germany

Introduction

- Contamination and charging is a limiting factor in transmission electron microscopy (TEM) and can lead to artifacts especially in scanning (S)TEM, where the electron beam is focused on the sample^[1,2]. On the other hand it is exploited, e.g., in hole-free phase plate (HFPP) TEM^[3,4].
- **Contamination:** Deposition of adsorbed molecules on the specimen surface by illuminating electrons.
- **Charging:** Generation of charges on/in the specimen leading to unwanted electrostatic potentials.

²National Institute for Nanotechnology, University of Alberta, Edmonton, Canada ⁴Center for Electron Nanoscopy, Denmark Technical University, Copenhagen, Denmark

Charging and a possible explanation

- Heating the Thread aC thin film to 275°C overnight leads to a thin film free of contamination and charging (Figure 7).
- \blacksquare EB aC, PCS and SiO₂ thin films show negative PS if they are cleaned by either in-situ overnight heating (EB aC) or UV light (Figure 8). The PS cannot be explained solely by the slightly decreasing t/λ (Figure 9) suggesting additional negative charging.

Both effects were studied using a special electron-optical setup of a Hitachi HF3300 (Figure 1). The setup allows the acquisition of electron energy loss spectroscopy (EELS) under focused electron-beam illumination and HFPP image series.

contamination and charging of thin films under focused electron-beam illumination.

- Information on thickness changes by low-loss spectra.
- Information on charging by power spectra analysis.
- The following thin films were investigated:
 - PVD/EB aC: 10/12 nm amorphous C (aC) by e⁻-beam physical vapor deposition (PVD) in a Lesker PVD75/Leica MED020.
 - Thread aC: 7 nm aC thin film by C-Thread evaporation.
 - PCS: 9 nm metallic glass alloy Pd_{77.5}Cu₆Si_{16.5} by sputter deposition.
 - SiO₂: 10 nm SiO₂ by e^{-} -beam (EB) PVD deposition.

Contamination and its inhibition

Illumination of the thin film shortly after insertion in the microscope leads to a strong increase of the relative thickness t/λ (Figure 2).

The decreasing thickness indicates that material is removed by the electron beam via electron-stimulated desorption (ESD).

1200 Studies of the work function ϕ of metals revealed

Fig. 9: t/λ measurements corresponding to Fig. 8 show a decreasing t/λ of the thin films.

Areal dose / C·cm⁻²

1200

1600

400

0

that adsorbed H₂O molecules can lead to a decrease of $\phi^{[6,7]}$. Adsorbed H₂O molecules can be interpreted as a surface dipole with the positive (H)

side facing to vacuum^[7] (Figure 10b) which causes a potential step δV . We propose that the observed negative charging of aC thin films stems from an ESDinduced change of ϕ in the irradiated area (Figure 10).

Contamination originates from the deposition of hydrocarbon contaminants on the thin-film surface induced by the electron beam with surface diffusion of adsorbed contaminants playing a major role (Figure 3).

Fig. 2: Exemplary t/λ evolutions for the EB aC (blue), the PCS (green) and the Thread aC (black) thin film

PVD aC, T = 0.3 s

PVD aC, T = 98 s

Plasmon Fit

Fig. 3: Schematic description of contamination: adsorbed molecules (red) are deposited by the electron beam (green) to form a contamination layer (black). Molecules available for deposition are supplied by surface diffusion.

- A detailed analysis of the acquired EEL spectra shows that the deposited contamination is similar to graphitic carbon (Figure 4) which is supported by a measurement of the sp₂-fraction of the contamination layer^[5].
- The measured t/λ can be transfered to a phase Energy loss / eV shift $\varphi = C_E t V_{MIP}$ if values for V_{MIP} (9±1 V) Fig. 4: EELS spectra of the PVD and λ (150±15 nm) of the deposited contamina- $_{aC}$ thin film before (blue) and after tion layer are assumed. Figure 5 shows a com-(red) a series. The plasmon peak parison of the expected φ and φ determined by agrees well with graphitic carbon. HFPP imaging. The curves agree well suggesting that no additional charging is present in the contamination layer.

 $\varphi = C_E R \,\delta V$

Numerous thin-film properties and experimental conditions will affect φ :

Temperature

Surface roughness

Porosity

φ

Conductivity

- Vacuum
- Beam current density

The described effect is a possible explanation for the functionality of the HFPP^[3] or Volta PP^[4].

Fig. 10: Schematic illustration of the formation of negative charge induced by ESD and a subsequent ϕ change. (a) PEs generate SEs which induce ESD of H₂O. (b) The desorption of H₂O causes a ϕ step of $-e\delta V$ in a circular area (2R). The electrostatic potential of the interrupted H₂O layer is displayed without (c) and with (d) thin film. In this model the induced phase shift is proportional to R and $-\delta V$.

Summary

- Contamination formed under intense focused electron-beam illumination is similar to graphitic carbon and does not charge^[5].
- Several methods are suitable for the complete or partial inhibition of contamination^[5].
- Contamination-free thin films showed no or small negative phase shift under electronbeam illumination which can be attributed to negative charging of the irradiated area.

Contamination can be inhibited by, e.g., UV cleaning or heating (Figure 6).

- The origin of the charge is explained by electron-stimulated desorption of adsorbed H₂O-molecules and a subsequent change of the work function. The resulting electrostatic potential causes the observed negative phase shift.
- The described charging phenomenon is dependent on numerous thin-film parameters and experimental conditions making variations between different thin films and microscopes likely.

References

[1] J. J. Hren, Ultramicroscopy **3** (1979), 91-95. [2] J. Brink et al., Ultramicroscopy 72 (1998), 41-52. [3] M. Malac et al., Ultramicroscopy 118 (2012), 77-89. [4] R. Danev et al. (2014). PNAS 111, 15635-15640. [5] S. Hettler et al., Micron 96 (2017) p. 38-47. [6] M. A. Henderson, Surf Sci Rep 46, p. 1-308. [8] Funding by DFG, KHYS and NRC is acknowledged. [7] J. M. Heras et al, Appl surf sci 108, p. 455-464.

KIT – The Research University in the Helmholtz Association

