TEM investigations of the sintering behavior of noble metal nanoparticles

M. Faulhaber¹, P. Müller¹, R. Schneider¹, K. Gao², M. Seipenbusch³, and D. Gerthsen¹

¹ Laboratory for Electron Microscopy (LEM), Karlsruhe Institute of Technology (KIT), 76128 Karlsruhe, Germany
² Institute for Mechanical Process Engineering and Mechanics (MVM), Karlsruhe Institute of Technology (KIT), 76128 Karlsruhe, Germany

Introduction
Catalytic nanoparticles
Several industrial applications, e.g., cleaning automobile exhaust gas and production of chemicals and pharmaceuticals
• In high-temperature catalytic processes:
 - Loss of catalytic activity of the active metal phase due to sintering or thermal deactivation
• Goal: better understanding of the nanoparticle transport kinetics
 - Enhancement of the stability of catalytic particles

Microscopical analysis
Ex-situ TEM: investigations after several steps of annealing at temperatures between 100 °C and 800 °C
In-situ TEM: investigation of samples heated from room temperature to an annealing temperature between 100 °C and 800 °C under high vacuum at a frequency of 1 image per minute

Model system
Pt nanoparticles on globular carrier particles of Al₂O₃, TiO₂, and SiO₂
Subsequent deposition of carriers and Pt nanoparticles on Si₃N₄ TEM grids with a foil thickness of 20 nm

Sample preparation
Chemical vapor synthesis (CVS) of metal-organic precursors
Preparation of oxide carrier particles by first metal-organic precursor in CVS reactor at 1000 °C and following sintering and drying at 1500 °C
Deposition of Pt nanoparticles by second precursor at 400 °C

Theory of the surface particle ripening
Smoluchowski ripening
- Controlled by Brownian motion of nanoparticles
- Dependent on particle size, density and temperature
- Coalescence of whole particles

Ostwald ripening
- Concentration of atoms in the vicinity of particles determined by Gibbs-Thompson effect, atom concentration \(\propto \frac{1}{r} \) (r: particle radius)
- Diffusion-controlled process
- Transport of single metal atoms through vapor phase and/or along surface
- Growth of bigger particles at the expense of smaller ones energetically advantageous

Results

In-situ investigations
- Pt nanoparticles on SiO₂ carrier at 100 °C
 - High mobility of single Pt nanoparticles
 - Coarsening by simultaneous Smoluchowski and Ostwald ripening

Ex-situ investigations
- Pt nanoparticles on Al₂O₃ carrier at 23 °C
 - Modification of the carrier surface under the influence of the 200 kV electron beam in TEM
 - Ostwald ripening dominant

Goals of the study
- Better understanding of the nanoparticle transport kinetics
- Enhancement of the stability of catalytic particles

Sample preparation
- Chemical vapor synthesis (CVS) of metal-organic precursors
- Preparation of oxide carrier particles
- Deposition of Pt nanoparticles

Theory of the surface particle ripening
- Smoluchowski ripening
- Ostwald ripening
- Combination of the two processes

References

Acknowledgement
This work was supported by the Land of Baden-Württemberg, Germany and Joint-Lab IP³, BASF, SE.

Contact: matthias.faulhaber@partner.kit.edu