Fabrication of a Boersch Phase Plate for Phase Contrast Imaging in a Transmission Electron Microscope

<u>K. Schultheiß¹</u>, B. Barton², F. Pérez-Willard^{1,3}, D. Gerthsen¹, R.R. Schröder²

1. Laboratorium für Elektronenmikroskopie and Center for Functional Nanostructures (CFN), Universität Karlsruhe (TH), D-76128 Karlsruhe, Germany 2. Max-Planck-Institut für Biophysik, Max-von-Laue Str. 3, D-60438 Frankfurt/Main, Germany 3. Present address: Carl Zeiss NTS GmbH, D-73447 Oberkochen, Germany Correspondence: schultheiss@lem.uni-karlsruhe.de

Introduction

- Weak-phase objects like biological specimens show very low contrast in conventional TEM images.
- > Splitting the critical maximum electron dose by taking defocus-series leads to a low signal-to-noise ratio of the images.

Fabrication of a Boersch Phase Plate

 \succ Patterning of the electrode layer by electron-beam lithography:

2

10 µm

_

Realization of an electrostatic microlens by a five-layered electrode structure in the center of the phase plate (Fig. 3 right-hand side).

 \succ Electron-beam evaporation of the lower shielding Au layer on the Si_{3+x}N_{4-x} membrane

Chip is coated with PMMA resist. Shape of the electrode, connecting leads and contact pad are defined with

SEM. Fig. 4 a,b: light microscope image of the structure after development of the PMMA resist.

 \succ Confinement of the electrical field to the central lens opening by a surrounding Au layer.

> Additional phase plate creates phase shift of 90° between scattered and unscattered electrons [1].

Phase plates

- > Zernike phase plate in TEM [2]: Thin carbon film with small hole in the center placed in the back focal plane (BFP) of objective lens.
- Boersch phase plate [3]: phase shift of unscattered electrons by an electrostatic potential in a microscaled electrostatic lens.
- \succ First experimental realization of Boersch phase plate [4].

Experimental Techniques

Fabrication of the Boersch phase plate

- Electron-beam lithography in a scanning electron microscope (SEM) Leo SUPRA 55VP with a Raith Elphy Plus pattern generator
- \succ Electron-beam evaporation of Au and Al₂O₃
- Focused ion-beam (FIB) lithography with a Zeiss FIB EsB 1540 with a Raith Elphy Plus pattern generator
- Experimental verification of the function
- Zeiss SESAM II Cryo 200 keV energy-filtering TEM (EFTEM)
- Positioning with piezodriven Kleindiek MM3A micromanipulator

Proposed Technological Realization

Weak lens as a constant phase-shifting device

Patterning of the electrode

(layer No. 5, Fig.3 right-hand side).

100 µm

Figure 2

Basic substrate > Commercially available low-stress $Si_{3+x}N_{4-x}$ membranes on Si chips (Fig. 2 and layer No. 4 in Fig. 3 right-hand side).

Step 1

Shaping of the phase plate

Step 2

- \succ Ion-beam lithography with Zeiss two-beam system (Fig. 8).
- > Exact positioning by cross-markers (see Fig. 4b).
- \succ Milling of the 3 sectors.
- \succ First tested design: outer diameter d_o = 45 µm, bar width b = 3 µm,
- outer diameter of microlens $d_m = 7 \mu m$ (Fig. 6).
- Improved design:
- $d_0 = 60 \ \mu m, \ b = 2 \ \mu m,$ $d_m = 3 \ \mu m$ (Fig. 7).

Figure 6

Figure 7

Matsumoto & Tonomura [5]: uniform phase shift at low voltages.

Phase-shift is proportional to the integrated voltage.

Modified design with three-fold symmetry (Fig. 3): Allows recovery of obstructed information by single sideband imaging according to [6].

References

- F. Zernike, *Phys. Z.*, 23, (1935), pp. 848
- R. Danev, K. Nagayama, Ultramicroscopy, 88, [2] (2001), pp. 243-252
- H. Boersch, Z. Naturforschung, 2a, (1947), pp. [3] 615-633
- K. Schultheiß et al., Rev. Sci. Instrum., 77, (2006),

Figure 8

Figure 4

Zeiss FIB/SEM two-beam system with Raith Elphy Plus pattern generator (Fig. 8)

- \succ Electron and ion column, oriented at an angle of 54° to each other.
- > Working distance must be adjusted carefully: Chip in the crossing point of both beams

Proof of Phase Plate Concept

Covering layers

remains, see Fig. 5).

 \succ Evaporation of a 2nd insulating layer (Al₂O₃).

> Evaporation of Au layer (Fig. 3, No. 3) on PMMA

pattern and lift-off process (only structure

 \succ Complete coverage of the structure by an Au layer: Special rotating holder that is tilted at 45°(Fig. 9): \implies side surfaces of the supporting bars are completely covered with shielding layer.

Figure 5

Step 3

FIB milling of the central lens opening

 \succ The last step is the milling of the central lens opening with the FIB (Fig. 10).

Implementation and Test of Phase Plate

- \succ Si chip with 2 phase plates fixed on a special aluminum holder (Fig. 11).
- > Contact pads connected with bondable terminals on the left by isolated wires fixed with conductive silver.
- > Attachment of aluminium holder to a piezodriven micromanipulator with 3 motors for exact positioning in the BFP.
- Electrical bushing through a flange.

Step 4

033701

- T. Matsumoto, A. Tonomura, Ultramicroscopy, 63, (1996), pp. 5-10
- E. Majorovits et al., *Ultramicroscopy*, (2006) in press [6]

Acknowledgements

We thank T. Kuhn (Institute for Applied Physics, University of Karlsruhe, Germany) for the operation of the electron-beam evaporation system. Furthermore, we thank Drs. R. Danev and K. Nagayama (Okazaki National Research Institutes, Ogazaki, Japan) for the introduction to phase plate microscopy and Dr. K. C. Holmes (Max Planck Institute for Medical Research, Heidelberg, Germany) for continuous support and stimulating discussions and Dr. Werner Kühlbrandt (Max Planck Institute of Biophysics, Frankfurt/Main, Germany) for his current support.

This work was supported by the DFG through the Center for Functional Nanostructures (CFN). It has been further supported by a grant from the Ministry of Science, Research and the Arts of Baden-Württemberg (Az: 7713.14-300).

 \succ Images of amorphous carbon films taken with different applied voltages. \succ CTF maxima (Thon rings) in calculated frequency spectra compared. \succ Constant phase shift of 90° achieved (Fig. 12) [4].

Figure 12

aluminium holder MM3A micromanipulator

Figure 11

Conclusions

- > Fabrication process suitable for the fabrication of microscaled electrostatic lenses.
- \succ Realization of first Boersch phase plate and its implementation in a transmission electron microscope.
- > Phase shift of up 90° of unscattered electrons achieved with respect to scattered electrons.
- > Further reduction of phase plate dimensions or magnification of the diffraction plane of the objective lens advantageous for future applications.
- > In combination with aberration correction: tuning to adjust spherical aberration, defocus and relative phase shift in such a way as to obtain perfect phase contrast transfer for a large range of spatial frequencies up to $1 / 0.1 \text{ nm}^{-1}$.